Попов Александр Валерьевич

ПРОДУКТИВНОСТЬ ОЗИМОЙ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ ПРИМЕНЕНИЯ РАЗЛИЧНЫХ ДОЗ СУХОГО ГРАНУЛИРОВАННОГО ПТИЧЬЕГО ПОМЕТА НА ОРОШАЕМЫХ ТЕМНО-КАШТАНОВЫХ ПОЧВАХ ЗАВОЛЖЬЯ

06.01.04 — агрохимия

Автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в Балашовском институте (филиале) ФГБОУ ВПО «Саратовский государственный университет имени Н.Г. Чернышевского»

Научный руководитель: кандидат биологических наук, доцент

Золотухин Афанасий Иванович

Официальные оппоненты: доктор сельскохозяйственных наук,

профессор Крючков Анатолий Георгиевич;

кандидат сельскохозяйственных наук, доцент **Долматов Алексей Петрович**

Ведущая организация: Федеральное государственное научное

учреждение «Волжский научноисследовательский институт гидротехники и мелиорации»

Защита диссертации состоится 17 февраля 2012 г. в 10.00 часов на заседании диссертационного совета Д 220.051.04 при ФГБОУ ВПО «Оренбургский государственный аграрный университет» по адресу: 460014, ГСП, г. Оренбург, ул. Челюскинцев, 18.

С диссертацией можно ознакомиться в библиотеке Оренбургского государственного аграрного университета. Объявление о защите и автореферат размещены на сайте $\Phi\Gamma BOY$ ВПО «Оренбургский государственный аграрный университет» www.orensau.ru и на сайте Φ едеральной службы по надзору в сфере образования и науки Минобразования и науки $P\Phi$ www.vak.ed.gov.ru

Автореферат разослан « » 20 20	втореферат разослан «»20	Γ
--------------------------------	--------------------------	---

Ученый секретарь диссертационного совета доктор сельскохозяйственных наук, профессор

Кононов В.М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В успешном решении задач по повышению урожайности сельскохозяйственных культур и созданию гарантированного производства зерна и кормов для животноводства в степных районах Поволжья ведущая роль отводится орошению и удобрениям. Эти два фактора на современном этапе развития сельского хозяйства являются материальной основой культуры земледелия и воспроизводства плодородия почвы.

В связи с неблагоприятными физическими свойствами сырого птичьего помета, затрудняющими механизацию использования его в качестве удобрения, и значительными потерями питательных веществ при его хранении особую актуальность приобретают вопросы, связанные с технологией его приготовления и использования.

К числу перспективных способов переработки птичьего помета относится его термическая сушка, которая способствует наиболее полному сохранению органического вещества, азота и зольных элементов питания растений, резко улучшает физические свойства удобрения, значительно повышает концентрацию питательных веществ в нем.

Исследования по технологии применения сухого гранулированного птичьего помета при возделывании озимой пшеницы на орошаемых темно-каштановых почвах Заволжья в зоне влияния лесных полос и вне ее до настоящего времени не проводились.

В связи с этим необходимо было решить вопросы, касающиеся особенностей влияния этого вида органических удобрений на агрохимическую и агрофизическую составляющие почвенного плодородия.

В качестве приоритетных намечены содержание гумуса, динамика макро- и микроэлементов, потребление и вынос элементов питания, урожайность и качество зерна озимой пшеницы. Открытым также оставался вопрос, связанный с потерей питательных веществ при поверхностном стоке и смыве почвы, тесно коррелирующим с плотностью почвы, водопроницаемостью и водопрочностью почвенных агрегатов.

На решение этих задач и были направлены наши исследования.

Цель и задачи исследований — эколого-агрохимическая оценка применения различных доз сухого гранулированного птичьего помета в системе лесных полос и без их участия при возделывании озимой пшеницы на орошаемых темно-каштановых почвах Заволжья.

Для достижения поставленной цели решались задачи:

- дать эколого-агрохимическую характеристику сухому гранулированному птичьему помету и изучить его влияние отдельно и совместно с лесными полосами на агрохимические показатели почвенного плодородия (содержание гумуса, макро- и микроэлементов);
- выявить влияние сухого гранулированного птичьего помета на агрофизические свойства почвы (плотность, водопрочность, водопроницаемость, сток твердый и жидкий);
- изучить влияние различных доз сухого гранулированного птичьего помета на фотосинтетическую деятельность посевов, формирование биомассы, урожайность и качество зерна озимой пшеницы Мироновская 808;
- выявить в связи с изучаемыми приемами особенности потребления озимой пшеницей воды и питательных веществ;
- дать эколого-экономическую и энергетическую оценку применению различных доз сухого гранулированного птичьего помета.

Научная новизна. Впервые на орошаемых темно-каштановых почвах Заволжья изучена и доказана возможность раздельного и совместного с влиянием лесных полос применения сухого гранулированного птичьего помета при возделывании озимой пшеницы. Выявлена наиболее эффективная доза применения удобрения. Определены размеры выноса и потребления макро- и микроэлементов. Установлено положительное влияние сухого гранулированного птичьего помета на урожайность зерна озимой пшеницы и сбор белка с единицы площади.

Практическая значимость работы. Разработаны рекомендации по применению сухого гранулированного птичьего помета отдельно и совместно с влиянием лесных полос при возделывании озимой пшеницы на орошаемых темно-каштановых почвах Заволжья, которые апробированы и внедрены в ООО «Нива» Энгельсского района на площади 212 га. При применении дозы птичьего помета 5,4 т/га урожайность озимой пшеницы Мироновская 808 составила 5,05 т/га, экономический эффект — 2537,7 руб. с 1 га. Разработанные рекомендации используются в учебном процессе СГАУ им. Н.И. Вавилова и СГУ им. Н.Г. Чернышевского.

Положения, выносимые на защиту:

1. Эколого-агрохимическая характеристика сухого гранулированного птичьего помета и его влияние отдельно и совместно с лесными полосами на агрохимические и агрофизические свойства темнокаштановых почв Заволжья;

- 2. Особенности влияния различных доз сухого гранулированного птичьего помета на урожайность озимой пшеницы, потребление воды и питательных веществ;
- 3. Эколого-экономическая и энергетическая оценка применения различных доз удобрений.

Апробация работы. Основные результаты работы докладывались на международных научно-практических конференциях: «Вавиловские чтения» (Саратов, 2008—2010); «Экономические аспекты развития современного общества» (Саратов, 2010); «Антропогенная трансформация природных экосистем» (Балашов, 2010), ежегодных конференциях профессорско-преподавательского состава СГАУ (Саратов, 2008—2010).

Публикации. По материалам диссертации опубликовано 7 печатных работ общим объемом 1,8 п.л., в т.ч. авторских 0,9.

Объем и структура диссертации. Диссертация изложена на 146 страницах и состоит из пяти глав, выводов и предложений производству, содержит 49 таблиц, 12 приложений. Список литературы представлен 319 источниками, из них 27 — иностранными авторами.

СОДЕРЖАНИЕ РАБОТЫ

1 Плодородие почв и продуктивность растений в связи с применением сухого гранулированного птичьего помета

Показана роль сухого гранулированного птичьего помета, примененного раздельно и в системе лесных полос в повышении плодородия почв и продуктивности растений; рассмотрено влияние орошения дождеванием и системы лесных полос на агрофизические, агрохимические и микробиологические свойства почвы (Буров, 1949; Горчичко, 1979; Григорьев, 1984; Ерхов, 1977; Конке, 1962; Мирцхулава, 1970; Поляков, 1981; Проездов, 1999; Попов, 2006).

2 Условия и методика работы

Опыты проводились в 2008 – 2010 гг. на темно-каштановой почве OOO «Нива» Энгельсского района Саратовской области.

Содержание гумуса в пахотном слое 2,3-2,5 %, что соответствует очень низкой обеспеченности. Нитрификационная способность почв составляла 6,3-6,8 мг/кг, что также свидетельствует о низкой обеспеченности. Концентрация подвижного фосфора, определенного мето-

дом Мачигина, колебалась от 12,6 до 19,6 мг/кг. И этим элементом пахотный слой обеспечен слабо.

Наиболее благоприятным для возделывания озимой пшеницы оказался 2008 г., а самым неблагоприятным — 2010 г. Техника полива ДМ-454-100 «Фрегат».

В опытах использовались лесные полосы шириной 18-27 м (6 рядов) плотной конструкции, возраст 40 лет. Главная порода — вяз приземистый, высотой 12, 5-15, 8 м.

Применялись полевой, лабораторно-полевой, лабораторный методы и производственные испытания. Метод расположения делянок в полевом опыте систематический. Площадь делянки 200 м^2 , повторность — четырехкратная.

Схема опытов включала следующие варианты.

Опыт № 1. Влияние различных доз сухого гранулированного птичьего помета на плодородие темно-каштановой почвы и продуктивность озимой пшеницы при орошении (без лесных полос).

- 1. Контроль; 2. 1,8 т/га сухого гранулированного птичьего помета, т/га; 3. 3,6 т/га сухого гранулированного птичьего помета; 4. 5,4 т/га сухого гранулированного птичьего помета.
- **Опыт № 2.** Влияние различных доз сухого гранулированного птичьего помета на плодородие темно-каштановой почвы и продуктивность озимой пшеницы при орошении (с лесными полосами).
- 1. Контроль; 2. 1,8 т/га сухого гранулированного птичьего помета, т/га; 3. 3,6 т/га сухого гранулированного птичьего помета; 4. 5,4 т/га сухого гранулированного птичьего помета.
- Опыт № 3. Влияние эквивалентных доз бесподстилочного птичьего помета на плодородие темно-каштановой почвы и продуктивность озимой пшеницы при орошении
- 1. Контроль; 2. 6 т/га бесподстилочного птичьего помета, т/га; 3. 12 т/га бесподстилочного птичьего помета; 4. 18 т/га бесподстилочного птичьего помета.

Опыт № 4. Влияние эквивалентных доз минеральных удобрений на плодородие темно-каштановой почвы и продуктивность озимой пшеницы при орошении

1. Контроль; 2. $N_{90}P_{67}K_{38}$; 3. $N_{180}P_{134}K_{76}$; 4. $N_{270}P_{201}K_{114}$.

Поливная норма $-600 \text{ м}^3/\text{га}$. Влажность почвы поддерживалась не ниже 75-80 % от наименьшей влагоемкости.

Сухой гранулированный птичий помет имел следующий химический состав: влага -12%; азот -5.0%; фосфор -3.7% и калий -2.1%. Он готовился

из бесподстилочного путем высокотемпературной сушки на смонтированной нами установке. Состав бесподстилочного помета плотной консистенции: влага -70%; азот -1.5%; фосфор -1.0% и калий -0.75%.

Из минеральных удобрений использовались аммиачная селитра, двойной суперфосфат и хлористый калий.

Исследования проводились с озимой пшеницей сорта Мироновская 808. Агротехника — общепринятая для данной зоны.

Все исследования сопровождались изучением факторов внешней среды, биометрическими измерениями и эколого-агрохимическими анализами.

В почвенных образцах определяли общее содержание гумуса методом Тюрина, подвижного фосфора и обменного калия — по Мачигину (ГОСТ 26205 — 84), нитрификационную способность почвы — по методу Кравкова (ГОСТ 26107-84), микроэлементы — по Пейве — Ринькису и Крупскому — Александровой, валовое содержание тяжелых металлов — спектральным методом.

Стоковые площадки устанавливались в трехкратной повторности для каждого варианта опыта. Воднопептизируемый ил определялся по Б.В. Андрееву (1963), плотность почвы — по методу режущих колец Качинского, водопрочность агрегатов — сухим и мокрым фракционированием методом Саввинова, водопроницаемость почвы и наименьшую влагоемкость — методом заливаемых площадок, влажность почвы — термостатно-весовым методом (ГОСТ 28268-89).

Фенологические наблюдения проводились по методике Руденко. Анализ структуры урожая — на закрепленных площадках размером $0.25 \,\mathrm{M}^2$ в 10-кратной повторности.

Определяли общую и продуктивную кустистость, длину стебля и колоса, число колосков и зерен в колосе и их массу по методике Госсортсети.

Урожай зерна учитывали методом прямого комбайнирования со взвешиванием зерна с каждой делянки и приведением его к стандартной влажности и $100\,\%$ чистоте.

Определение качества зерна: масса 1000 семян — по ГОСТу 10842-76, натура — по ГОСТу 10840-64, стекловидность — по ГОСТу 10987-76, содержание и качество клейковины — по ГОСТу 13586-64, белок — по ГОСТу 10846-74.

Экономическая оценка результатов исследований проведена по методике, утвержденной РАСХН (1991), энергетическая — по Коринец (1989). Статистическая обработка экспериментальных данных — по Б.А. Доспехову (1985).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

- 3 Плодородие темно-каштановой почвы в связи с применением сухого гранулированного птичьего помета раздельно и в системе лесных полос
- **3.1 Агрофизические свойства.** При организации рационального режима орошения озимой пшеницы необходимо учитывать наличие тесной связи между плотностью почвы и ее водными свойствами. Оптимальное проявление их наблюдается при плотности 1,20-1,30 г/см³.

Самая высокая водопрочность почвенных агрегатов достигнута при совместном влиянии лесных полос и применении сухого гранулированного птичьего помета. С повышением дозы удобрения возрастала и водопрочность, достигнув своего максимума при внесении 5,4 т/га.

Поверхностный сток в среднем за три года на контрольном варианте составил 68,2, при использовании лесных полос 56,9 и совместном применении 5,4 т/га сухого гранулированного птичьего помета и лесных полос 39,2 м³/га. Совместное использование лесополос и самой высокой дозы помета в среднем за три года уменьшило поверхностный сток на 42,5%, а смыв почвы в 7 раз.

Эколого-энергетическая оценка показателей ирригационной эрозии почв, проведенная на основе графоаналитического метода путем наложения кривых интенсивности дождя и водопроницаемости почв показала его хорошую сопоставимость с результатами полевых экспериментов.

3.2 Агрохимические свойства почвы. Эколого-агрохимические исследования показали, что при нарушенной технологии хранения птичьего помета из него безвозвратно теряется в среднем 59 % азота, 38 % фосфора и 78 % калия.

Столь значительные потери элементов пищи растений обесценивают помет птичий как органическое удобрение, создают серьезную угрозу окружающей среде и требуют изыскания надежных методов его переработки и утилизации, наиболее существенным из которых является высокотемпературная сушка.

Необходимость производства сухого гранулированного помета усиливается в настоящее время в связи с тем, что из общего количества помета, получаемого на птицефабриках, около 80 % составляет бесподстилочный со сверхнормативной влажностью 75 – 90 % и выше.

Значительная часть элементов питания в сухом гранулированном птичьем помете находится в водорастворимой форме. В исследованных образцах в водную вытяжку переходило азота 47-70, фосфора -4-20 и

калия -60-90 % от общего их содержания в удобрениях. Для полевых опытов нами использовался сухой гранулированный птичий помет с влажностью 12 %, содержанием азота 5.0, фосфора -3.7 и калия -2.1 %.

Это удобрение является экологически безопасным. Ртуть в исследованных образцах обнаружена лишь в виде следов. Содержание кадмия и мышьяка незначительно. Концентрация свинца и никеля в 1,5-2,0 раза ниже установленного регламента. В сухом гранулированном птичьем помете полностью погибли семена сорняков, отсутствовали пестициды, патогенные микроорганизмы, яйца и личинки гельминтов.

Следовательно, подготовленное при строгом соблюдении технологии на основе бесподстилочного птичьего помета сухое гранулированное удобрение является высококонцентрированным и экологически безопасным, пригодным для удобрения озимой пшеницы и других сельскохозяйственных культур.

Содержание гумуса в твердом стоке при дождевании озимой пшеницы ДМ-454-100 «Фрегат» в среднем за три года на контрольном варианте было на 0,25, а при использовании сухого гранулированного птичьего помета на 0,32-0,44 % выше, чем в самой почве.

Применение сухого гранулированного птичьего помета раздельно и в системе лесных полос не только повышает содержание гумуса в пахотном слое почвы, но и способствует большей его сохранности при орошении дождеванием.

Общее содержание основных питательных веществ в твердом стоке имело тенденцию к повышению по сравнению с их количеством в пахотном слое темно-каштановой почвы. Смытый материал оказался ценнее самой почвы, превосходя ее по накоплению нитратов в 1,1-2,8, фосфатов -1,5-2,2 и окиси калия - в 1,1-1,3 раза.

Содержание нитратов в жидком стоке колебалось от 1,3 до 2,1 мг/л. Аммиачного азота значительно меньше нитратного -0,1-0,3 мг/л. Концентрация фосфора колеблется от 0,1 до 0,9, а калия — от 4,6 до 9,4 мг/л.

Сухой гранулированный птичий помет в дозах 3,6 и 5,4 т/га способствовал некоторому росту концентрации химических веществ в жидком стоке, однако во всех случаях их количество было значительно ниже биологически допустимого уровня.

Сухой гранулированный птичий помет не оказывал существенного влияния на валовое содержание микроэлементов в низкоагрегированном иле, но повышал их концентрацию в высокоагрегированной фракции, что связано, по-видимому, с высоким накоплением в ней гумуса.

Содержание микроэлементов в жидком стоке колебалось в следующих пределах: для бора 0.03-0.07, марганца 0.1-0.4, цинка 1.0-1.2, меди 0.1-0.3, молибдена 0.01-0.04, кобальта 0.05-0.07 мг/л.

Химический анализ продуктов стока и смыва показал большую обогащенность их гумусом, макро- и микроэлементами по сравнению с исходной почвой, что вызывает снижение потенциального и эффективного плодородия при ирригационной эрозии и приводит к пестроте почвенного покрова.

Содержание гумуса в коллоидных частицах значительно выше, чем в макроагрегатах почвы, что подчеркивает роль органического вещества в создании водопрочной структуры.

Совместное применение сухого гранулированного птичьего помета и лесополос повышает не только плодородие, но и противоэрозионную стойкость почв, что в итоге приводит к меньшей потере гумуса, макро- и микроэлементов.

3.3 Продуктивность озимой пшеницы. Средняя прибавка урожая зерна от применения сухого гранулированного птичьего помета в дозе 1,8 т с 1 га составила 0,3 т с 1 га, или 9,4 % по сравнению с орошаемым контролем. Удвоенная доза помета повысила урожайность зерна на 0,93, утроенная — на 1,68 т с 1 га, что составляет соответственно 29,1 и 52,5 % по сравнению с контролем (табл. 1).

Таблица 1 — Урожайность зерна орошаемой озимой пшеницы в зависимости от применения различных доз сухого гранулированного птичьего помета, т/га

Дозы СГПП,	2000 -	2000 -	2000 5 2010 5	G	Приб	бавка			
т/га	2008 г.	2009 г. 2010 г. Средняя	2009 1:	2009 F.	лов г.	2008 г. 2009 г. 2010 г. Средняя	Средняя	т с 1 га	%
Без лесных полос									
0	3,32	3,23	3,06	3,20	_	_			
1,8	3,59	3,55	3,38	3,50	0,30	9,37			
3,6	4,06	4,30	4,02	4,13	0,93	29,1			
5,4	4,64	5,06	4,63	4,88	1,68	52,5			
HCP ₀₅	0,14	0,16	0,16	0,20					
		С леснь	іми полосам	ии					
0	3,37	3,38	3,32	3,36	_	_			
1,8	3,70	3,75	3,60	3,69	0,33	9,82			
3,6	4,45	4,70	4,38	4,51	1,15	34,2			
5,4	5,28	5,45	4,90	5,21	1,85	55,5			
HCP ₀₅	0,16	0,15	0,16	0,20					

Прибавка урожая на участках с влиянием лесных полос была еще более значительная. За счет лесных полос на контроле и минимальной дозе удобрения дополнительно получено в среднем $0.16-0.19~\rm T$ с 1 га зерна озимой пшеницы. Особенно заметный синергизм совместного воздействия изученных факторов проявился при использовании сухого гранулированного птичьего помета в дозах $3.6~\rm u$ $5.4~\rm t$ с $1~\rm ra$. На этих вариантах прибавки урожая зерна озимой пшеницы под влиянием лесных полос возросли до $0.33-0.38~\rm t$ с $1~\rm ra$.

Урожайность зерна озимой пшеницы в среднем за три года на контроле составила 3,2, при внесении в почву гранулированного птичьего помета в дозе 5,4 т/га - 4,88, а при совместном влиянии этой дозы удобрения и лесных полос - 5,21 т с 1 га. На лучшем варианте относительное долевое участие влияния удобрений составило 55 и лесных полос - 9,8 %.

3.4 Качество зерна. Натура зерна в наших опытах сильно зависела от погодных условий. На контрольном варианте в засушливом 2010 году она оказалась минимальной - 738 г/л, а во влажном 2008 году максимальной - 803 г/л. Сухой гранулированный птичий помет в дозах 3,6-5,4 т/га устойчиво повышал этот показатель на 34-52 г/л.

Решающее влияние на накопление сырого белка оказали погодные условия.

Максимум его был отмечен в более засушливые 2009-2010 гг. -14,7-15 %. В среднем за три года на контрольном варианте содержание сырого белка составило 13,7 %.

Сухой гранулированный птичий помет в дозе 3,6 т/га повысил содержание сырого белка на 1,1%. Более высокие дозы помета не способствовали адекватному приросту белка. Под влиянием лесных полос наблюдалась тенденция к повышенному накоплению белка в зерне на всех вариантах (табл. 2).

Без удобрений в среднем за три года содержание сырой клейковины составило 27,5%, а на удобренных вариантах 28,4-30,3%. Качество клейковины имело тенденцию к уменьшению. Стекловидность зерна коррелировала с величиной сырой клейковины.

Сила муки наибольшей была на хорошо удобренных вариантах. Максимальный объемный выход хлеба 1000-1050 мл отмечен также на хорошо удобренных вариантах.

Содержание незаменимых аминокислот на удобренных вариантах в большинстве случаев оставалось неизменным. При внесении сухого гранулированного птичьего помета в дозах 3,6 и 5,4 т/га в зерне озимой

пшеницы содержание нитратов и нитритов не превышает ПДК, что дает возможность использовать такое зерно для любых нужд.

Таблица 2 — Показатели качества зерна орошаемой озимой пшеницы в зависимости от различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос (2008—2010 гг.)

Дозы СГПП, т/га	Натура зерна, г/л	Масса 1000 зерен, г	Стекловид- ность, %	Содержание белка, %	Содержание клейковины, %				
	Без лесных полос								
0	731	37,0	60,8	13,7	27,5				
1,8	740	37,1	61,1	14,2	28,4				
3,6	765	38,0	63,4	14,5	29,0				
5,4	783	39,2	65,5	14,9	30,1				
		С лесны	ми полосами						
0	735	37,0	61,2	13,9	27,9				
1,8	747	37,5	62,4	14,4	28,8				
3,6	769	38,3	68,7	14,7	29,5				
5,4	787	39,7	69,0	15,1	30,3				

3.5 Потребление озимой пшеницей воды и питательных веществ. В осенний период перед посевом озимой пшеницы проводились влагозарядковые поливы нормой $1000-1200 \text{ м}^3/\text{га}$. В годы исследований погодные условия резко отличались по температуре воздуха и количеству выпавших осадков в период вегетации озимой пшеницы. В связи с этим для поддержания заданного уровня предполивной влажности почвы потребовалось различное число поливов. В 2008 году потребовалось 3, в 2009-4 и в 2010 году, наиболее засушливом, -5 поливов. По

Средний расход воды на формирование тонны зерна и соответствующего количества побочной продукции при внесении 1,8 т/га сухого гранулированного птичьего помета снизился на 125, 3,6 т/га — на 321 и 5,4 т/га — на 491 м³/га. В зоне влияния лесных полос показатели коэффициентов водопотребления снизились еще на 60-95 м³/га (табл. 3).

сравнению с наиболее влажным 2008 годом оросительная норма в 2009

году увеличилась в 1,2, а в 2010 — в 1,4 раза.

В азотном питании озимая пшеница больше всего нуждается в первую половину вегетации. За это время ею усваивается основное количество азота. В последующие фазы накопление азота незначительно и

в основном продолжается перераспределение его из вегетативных органов в генеративные. Помет оказывает существенное положительное влияние на потребление азота растениями (табл. 4).

Таблица 3 — Коэффициенты водопотребления орошаемой озимой пшеницы в зависимости от различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос, $м^3/T$

Дозы СГПП, т/га	2008 г.	2009 г.	2010 г.	Среднее за три года					
Без лесных полос									
0	1353	1392	1551	1432					
1,8	1251	1266	1404	1307					
3,6	1106	1045	1181	1111					
5,4	909	888	1025	941					
	Сл	есными полосами	ī						
0	1333	1330	1429	1364					
1,8	1214	1199	1318	1244					
3,6	1009	956	1083	1016					
5,4	851	825	968	881					

Таблица 4 — Потребление азота озимой пшеницей в зависимости от различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос (2008 – 2010 гг.), кг/га

Лозы	Дозы СГПП, /га Кущение Тр		Колошение	Полная спелость					
		Трубкование		зерно	солома	общий вынос			
	Без лесных полос								
0	11,8	46,3	48,8	71,0	12,8	83,8			
1,8	14,7	56,1	58,8	82,2	14,8	97,0			
3,6	20,6	73,3	76,3	102	18,1	120			
5,4	23,2	90,3	95,8	124	22,6	147			
		С лесным	ии полосами						
0	13,0	50,7	51,6	76,6	13,7	90,3			
1,8	19,0	63,1	63,4	87,4	15,0	102			
3,6	24,7	82,3	89,1	113	19,8	133			
5,4	30,7	96,4	104	134	25,0	159			

Большая часть азота концентрируется в зерне. В среднем за три года вынос азота с основной продукцией составил на контрольных вариантах 71-77, а при внесении помета в дозе 5.4 т/га -147-159 кг/га.

С побочной продукцией вынос азота в среднем за три года составил на контроле 12,8-13,7, а при использовании помета в дозе 3,6 и 5,4 т/га -18,1-25,0 кг/га.

Большая часть фосфора поглощается зерном. На неудобренных контролях в среднем за три года с зерном было вынесено из почвы $27-30~\rm kг/ra$ фосфора, а с соломой $-4,61-4,84~\rm kr/ra$. При внесении в почву $5,4~\rm t/ra$ сухого гранулированного помета вынос фосфора зерном составил 40-44, а соломой $-9,7-10,4~\rm kr/ra$. Общий вынос фосфора при внесении этой дозы помета составил $50-55~\rm против$ $27-30~\rm kr/ra$ на контрольных вариантах (табл. 5).

Таблица 5 — Потребление фосфора озимой пшеницей в зависимости от различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос (2008 – 2010 гг.), кг/га

Полу	Дозы ГПП, т/га Кущение	Трубкова- ние Ко		Полная спелость					
СГПП, т/га			Колошение	зерно	солома	общий вынос			
	Без лесных полос								
0	2,19	17,0	17,3	22,4	4,61	27,0			
1,8	2,58	19,3	19,4	27,6	5,60	33,2			
3,6	3,30	23,2	23,5	33,0	6,60	39,6			
5,4	4,09	27,4	27,8	40,0	9,75	49,7			
		С лесным	ии полосами						
0	2,70	18,9	18,2	25,2	4,84	30,0			
1,8	3,35	21,0	21,0	29,1	5,90	35,0			
3,6	4,27	25,3	26,9	38,3	7,22	45,5			
5,4	4,97	33,1	33,3	44,3	10,4	54,7			

Калий сильнее накапливался в начальный период роста растений. Уже в фазу трубкования озимой пшеницей потреблялось в среднем за три года 90-91~% от всего накопленного за вегетацию калия, а к фазе колошения он был усвоен растениями почти полностью. При этом на удобренных фонах растения потребляли его в 1,1-1,3 раза больше, чем на контроле (табл. 6).

Больше микроэлементов выносится из почвы с побочной продукцией. Солома превысила зерно по выносу цинка и молибдена в 1,7-1,8 раза; бора, марганца и меди — в 2,9-3,2 и кобальта — в 5 раз.

Таблица 6 — Потребление калия озимой пшеницей в зависимости от применения различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос (2008 - 2010 гг.), кг/га

Дозы				Полная спелость					
СГПП, т/га	Кущение	Трубкование	Колошение	зерно	солома	общий вынос			
	Без лесных полос								
0	15,5	64,3	70,5	19,2	52,0	71,2			
1,8	17,3	71,5	78,7	21,3	58,0	79,3			
3,6	19,8	88,4	95,1	26,4	70,9	97,3			
5,4	22,4	106	120	31,7	74,6	116			
		С леснь	іми полосами						
0	16,4	69,0	75,0	20,8	55,1	75,9			
1,8	18,4	76,2	83,3	24,0	61,6	85,6			
3,6	22,3	99,6	102	30,2	78,7	109			
5,4	25,4	115	127	39,8	92,1	132			

Сухой гранулированный птичий помет, применяемый в дозе 5,4 т/га, повышал вынос цинка, меди и молибдена в 1,4-2,0, а бора, марганца и кобальта в 1,2-1,3 раза по сравнению с неудобренным контролем.

Коэффициенты использования питательных веществ из сухого гранулированного птичьего помета колебались для азота от 13 до 25, фосфора — от 7,5 до 12,3 и калия — от 21,3 до 49,1 %.

Из микроэлементов рациональнее всего расходовался цинк: при внесении 5,4 т/га сухого гранулированного птичьего помета коэффициент использования этого элемента составил в среднем за три года $18,5\,\%$, в то время как медь, кобальт, молибден, бор и марганец усваивались только на $8,0-11,1\,\%$.

4 Эколого-экономическая и энергетическая оценка применения различных доз сухого гранулированного птичьего помета и системы лесных полос

Окупаемость сухого гранулированного птичьего помета прибавками урожая зерна озимой пшеницы повышается по мере увеличения дозы удобрения (табл. 7).

Таблица 7 — Окупаемость сухого гранулированного птичьего помета прибавками урожая зерна озимой пшеницы, кг/т

Дозы СГПП, т/га	2008 г.	2009 г.	2010 г.	Средняя					
	Без лесных полос								
1,8	150	178	178	169					
3,6	205	297	267	256					
5,4	300	339	291	310					
	С лесными полосами								
1,8	183	205	155	181					
3,6	300	367	294	320					
5,4	354	383	292	343					

Условно чистый доход при внесении сухого гранулированного птичьего помета в дозе 3,6 т/га составил без применения лесных полос 1,19, а с ними -1,65 тыс. руб./га. Уровень рентабельности на этих вариантах в среднем за три года составил соответственно 74,4 и 91,7%.

Наибольшая экономическая эффективность выявлена при использовании гранулированного птичьего помета в дозе 5,4 т/га.

Условно чистый доход на этом варианте без применения лесных полос составил 2,54, а в зоне их влияния — 2,85 тыс. руб./га. Этот же вариант отличался и максимальным уровнем рентабельности — 102-105~% (табл. 8).

Затраты для компенсации потерь гумуса уменьшились по мере увеличения доз удобрения. Аналогичная закономерность наблюдалась и с жилким стоком.

Коэффициент энергетической эффективности в среднем за три года на контрольном варианте без применения лесных полос составил 2,69, а с ними -2,82. По мере нарастания дозы удобрения он повысился в первом случае с 2,89 до 3,88, а во втором - с 3,04 до 4,13.

Таблица 8 — Экономическая эффективность применения различных доз сухого гранулированного птичьего помета под орошаемую озимую пшеницу (2008 — 2010 гг.)

Дозы СГПП, т/га	Прибавка урожая зер- на, т/га	Стоимость продукции, тыс.руб./га	Затраты, тыс. руб./га	Условно чистый доход, тыс. руб./га	Уровень рентабель- ности, %				
	Без лесных полос								
1,8	0,30	0,90	0,70	0,20	28,6				
3,6	0,93	2,79	1,60	1,19	74,4				
5,4	1,68	5,04	2,50	2,54	102				
	С лесными полосами								
1,8	0,33	0,99	0,90	0,09	10,0				
3,6	1,15	3,45	1,80	1,65	91,7				
5,4	1,85	5,55	2,70	2,85	105				

Сухой гранулированный птичий помет не загрязняет почву, зерно и солому тяжелыми металлами. Наоборот, на хорошо удобренных участках в ряде случаев наблюдалась тенденция к уменьшению их накопления в почве и биомассе озимой пшеницы.

ВЫВОДЫ

- 1. При существующей системе хранения птичьего помета из него безвозвратно теряется в среднем 59 % азота, 38 % фосфора и 78 % калия. Столь значительные потери элементов пищи растений обесценивают птичий помет как органическое удобрение, создают серьезную угрозу окружающей среде и требуют изыскания надежных методов его переработки и утилизации, наиболее существенным из которых является высокотемпературная сушка.
- 2. Сухой гранулированный птичий помет содержит азота 5,0-6,0, фосфора -3,5-7,7 и калия -2,0-2,5 % на абсолютно сухое вещество. На долю водорастворимых соединений приходится азота 47-70, фосфора -15-20 и калия -60-90 % от их общего количества.
- 3. Под влиянием сухого гранулированного птичьего помета улучшаются агрофизические и агрохимические свойства орошаемой темнокаштановой почвы: снижается плотность почвы до 1,2-1,3 г/см³, увеличивается в 1,5-1,7 раза водопроницаемость. Содержание водопрочных

агрегатов в пахотном слое темно-каштановой почвы в фазу колошения озимой пшеницы в среднем составляет на контроле 33,8 %, при внесении сухого гранулированного птичьего помета в дозе 5,4 т/га в зоне без лесных полос -35,3 % и в зоне их влияния -37,1 %.

- 4. Формирование поверхностного стока и смыва почвы находится в тесной зависимости от водопроницаемости почвы и ее плотности. Сухой гранулированный птичий помет повышает противоэрозионную стойкость почвы. Максимальный эффект достигается при его применении в дозе 5,4 т/га в зоне влияния лесных полос. Смыв почвы в среднем за три года на контроле составляет 0,23, при использовании лесных полос 0,15, а при совместном применении их с удобрениями в дозах 3,6-5,4 т/га 0,05-0,02 т/га за один полив. Поверхностный сток от применения сухого гранулированного птичьего помета в дозе 3,6 т/га уменьшается в среднем на 9,4-9,6, а в дозе 5,4 т/га на 16,8-17,7 м³/га за один полив.
- 5. Темно-каштановая почва имеет очень низкую обеспеченность гумусом, нитратным азотом, подвижным фосфором и микроэлементами, среднюю и высокую калием. Сухой гранулированный птичий помет в дозе 5,4 т/га оказывает положительное действие на содержание гумуса, повышает содержание подвижных соединений азота и фосфора до средней и повышенной обеспеченности.

Под влиянием удобрения в фазу колошения озимой пшеницы содержание водорастворимого бора в почве увеличивается в 1,5 раза, а подвижных соединений марганца и кобальта — в 1,2 раза.

6. Сухой гранулированный птичий помет, примененный раздельно и в системе лесных полос, оказывает положительное влияние на основные показатели фотосинтетической деятельности озимой пшеницы: увеличивается площадь листьев, продуктивность фотосинтеза и фотосинтетический потенциал посева.

Продуктивность фотосинтеза в фазу колошения озимой пшеницы в среднем на контроле составляет 4,53, а на удобренных вариантах — $4,90-5,31~\text{г/m}^2/\text{сутки}$.

7. Прибавка урожая зерна от применения сухого гранулированного птичьего помета в дозе 1,8 т/га составляет 0,3 т с 1 га по сравнению с орошаемым контролем. Удвоенная доза удобрения повышает урожайность озимой пшеницы на 0,93, а утроенная — на 1,68 т с 1 га; лесные полосы способствуют дополнительному сбору зерна до 0,33 — 0,38 т с 1 га. Относительные прибавки урожая зерна при внесении 1,8 т/га удобрения составляют 9,4-9,8; 3,6 т/га -29,1-34,2 и 5,4 т/га -52,5-55,0 %.

Эквивалентные дозы сухого гранулированного, бесподстилочного птичьего помета и полного минерального удобрения по своему влиянию на урожайность зерна озимой пшеницы оказались равноценными.

8. Сухой гранулированный птичий помет в дозах 3,6 и 5,4 т/га способствует существенному улучшению качества зерна озимой пшеницы. Под его влиянием в среднем на 32-52 г/л повышалась натура зерна, на 0.8-1.2% — содержание сырого белка, на 1.5-2.6% — содержание клейковины.

Максимальный сбор белка превышает неудобренный контроль в 1,6-1,7 раза. На контроле валовой выход белка составляет 438, при внесении 5,4 т/га сухого гранулированного птичьего помета без лесных полос 727, а с ними - 787 кг/га. Наибольший объемный выход хлеба 1000-1050 мл также достигается на фоне хорошо удобренных вариантов.

- 9. Средний расход воды на формирование тонны зерна и соответствующего количества побочной продукции при внесении 1,8 т/га сухого гранулированного птичьего помета снижается на 125, 3,6 т/га на 321 и 5,4 т/га на 491 м³/га. В зоне влияния лесных полос эти показатели уменьшаются еще на 60-95 м³/га.
- 10. Вынос азота с урожаем основной и побочной продукции на контрольных вариантах составляет 84-90, фосфора -27-30 и калия -71-76 кг/га. При внесении 5,4 т/га сухого гранулированного птичьего помета эти показатели возрастают соответственно до 147-159, 50-55 и 116-132 кг/га.
- 11. Выявлена высокая экономическая и энергетическая эффективность различных доз сухого гранулированного птичьего помета, примененных раздельно и в системе лесных полос. Окупаемость тонны удобрения прибавками урожая зерна составляет в среднем без применения лесных полос 169-310, а с ними -181-343 кг. Условно чистый доход при внесении 5,4 т/га удобрения равен 2,54-2,85 тыс. руб./га, уровень рентабельности -102-105%, коэффициент энергетической эффективности 3,88-4,13.

Бесподстилочный птичий помет и полное минеральное удобрение в эквивалентных дозах по своей экономической эффективности уступают сухому гранулированному птичьему помету.

12. Компенсация затрат на потери с жидким и твердым поверхностным стоком при орошении озимой пшеницы способствует в среднем увеличению условно чистого дохода на 0,20-0,25 тыс. руб./га и уровня рентабельности на 19,3-30,4% по сравнению с традиционным методом расчета экономической эффективности применения удобрений.

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

В сухостепной зоне Саратовского Заволжья на орошаемых темно-каштановых почвах для получения 4,5-5,0 т с 1 га зерна озимой пшеницы, рационального расхода оросительной воды — снижения коэффициента водопотребления на 438-491 м³/т зерна, окупаемости удобрений 310-343 кг зерна на одну тонну удобрения, получения прибыли 2,5-2,8 тыс. руб./га и рентабельности 102-105 %, сохранения благоприятных агрофизических и агрохимических свойств рекомендуется: вносить сухой гранулированный птичий помет в дозе 5,4 т/га на фоне орошения ДМ-454-100 «Фрегат» с поливной нормой не более 600 м³/га.

Применение сухого гранулированного птичьего помета особенно эффективно в зоне влияния системы лесных полос плотной конструкции. Главная порода — вяз приземистый, высотой 12,5-15,8 м. Бонитет насаждений I-II. Существенную зону влияния лесополос на поддержание микроклимата, влагораспределение и урожайность следует принимать до $20~\rm H$.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах, рекомендованных ВАК

1. **Попов, А.В.** Экономическая и экологическая оценка применения различных доз сухого гранулированного птичьего помета и системы лесных полос / А.В. Попов, Л.В. Головачева, Г.Н. Попов, А.В. Панфилов // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. -2011. -№ 9. -C. 10-14.

Статьи в журналах, тематических сборниках и материалах конференций

- 2. **Попов, А.В.** Качество зерна озимой пшеницы / А.В. Попов, А.И. Золотухин // Антропогенная трансформация природных экосистем: материалы всероссийской научно-практической конференции. Балашов: Николаев, 2010. С. 147—150.
- 3. Попов, А.В. Фотосинтетическая деятельность посевов озимой пшеницы / А.В. Попов, А.И. Золотухин // Антропогенная транс-

- формация природных экосистем: материалы всероссийской научнопрактической конференции. Балашов: Николаев, 2010. С. 150—152.
- 4. **Попов, А.В.** Эколого-агрохимическая оценка сухого гранулированного птичьего помета / А.В. Попов, А.И. Золотухин // Антропогенная трансформация природных экосистем: материалы всероссийской научно-практической конференции. Балашов: Николаев, 2010. С. 153—156.
- 5. **Попов**, **А.В.** Важнейшие приемы повышения качества зерна озимой пшеницы / А.В. Попов, А.В. Панфилов, О.В. Власова // Экономические аспекты антикризисного развития современного общества: материалы II международной научно-практической конференции. Ч. 2. Саратов, 2010. C. 56 60.
- 6. **Попов, А.В.** Энергетическая оценка внесения сухого гранулированного птичьего помета при возделывании озимой пшеницы / А.В. Попов, А.В. Панфилов // Экономические аспекты антикризисного развития современного общества: материалы II международной научно-практической конференции. Ч. 2. Саратов, 2010. С. 64—66.
- 7. Панфилов, А.В. Экологическая эффективность применения различных доз удобрений и системы лесных полос / А.В. Панфилов, А.В. Попов // Современные тенденции формирования и развития агропромышленного рынка: материалы международной научнопрактической конференции, посвященной 10-летию факультета агропромышленного рынка и кафедры «Коммерция в АПК». Саратов: ИЦ «Наука», 2010. С. 236—239.

Попов Александр Валерьевич

ПРОДУКТИВНОСТЬ ОЗИМОЙ ПШЕНИЦЫ В ЗАВИСИМОСТИ ОТ ПРИМЕНЕНИЯ РАЗЛИЧНЫХ ДОЗ СУХОГО ГРАНУЛИРОВАННОГО ПТИЧЬЕГО ПОМЕТА НА ОРОШАЕМЫХ ТЕМНО-КАШТАНОВЫХ ПОЧВАХ ЗАВОЛЖЬЯ

Автореферат диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Подписано в печать 27.12.11. Формат 60×84/16. Усл. печ. л. 1,0. Печать трафаретная. Бумага офсетная. Заказ № 4272. Тираж 100 экз.

Издательский центр ОГАУ 460014, г. Оренбург, ул. Челюскинцев, 18 Тел.: (3532)77-61-43